欢迎来到温州柯玛斯电气有限公司! 工业插座,工业插头,防水插座,防水插头,插座箱,移动电源箱,组合式电源箱,电源检修箱

咨询热线:0577-62676228 13968713952
资讯动态 INFOMATION DYNAMIC
联系我们 CONTACT

电话:13968713952

邮箱:kemasi@kemasi.com

公司新闻 您当前的位置:主页 > 新闻中心 > 行业动态 >

求接近开关如何接线?

  

  在讨论这个问题时,有一个问题先弄明白就是这里所说的低电平即0V,并不是指如果不给电的状态例如一个接近开关的黑线或蓝线被剪断时黑/蓝线V也是有电压的,而剪断的话就没有了电压,所以没电和0V是两个概念,不要混淆。其次,负极不一定就是0V,要看负极给定的引入电压是多少。

  首先说NPN:NPN接通时是低电平输出,即接通时黑色线V),下图即为NPN型接近开关原理图,中间电阻代表负载,此负载可以是金属感应物或继电器或PLC等,中间三个圆圈代表开关引出的三根线,其中棕线要接正,蓝线要接负,黑色为信号线。此为常开开关,当开关动作关闭时黑色和蓝色两线,这时黑色线输出电压与蓝线电压相同,自然就是负极给定电压(通常为0V)。

  PNP:PNP接通时为高电平输出,即接通时黑线V),下图为PNP型三线开关原理图,电阻代表负载,当开关工作时,图1开关闭合,即黑线,此时棕线与黑线相当于一条线,电压自然就是正极电压(通常为24V)。

  1)接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP型,它们的接线是不同的。请见下图所示:

  3)三线制接近开关的接线:红(棕)线接电源正端;蓝线V端;黄(黑)线为信号,应接负载。而负载的另一端是这样接的:对于NPN型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端。

  5)需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块 流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用 PNP型接近开关。千万不要选错了。

  7)有的厂商将接近开关的“常开”和“常闭”信号同时引出,或增加其它功能,此种情况,请按产品说明书具体接线)条中所说的,接入PLC的三线制接近开关是用NPN型还是用PNP型,这要看PLC的硬件情况,很难说孰多孰少!主要是由PLC输 入电路的结构决定的,是日本式还是欧洲式?现先举西门子公司S7-300 PLC为例,常用的数字量输入模块是32点的SM321,DI32×DC24V(6ES7 321-1BL00-0AA0),该模块的接线图如下所示:

  从图中可以看出,外部开关量输入触点的公共端接到了电源的正端,这种情况应使用PNP型接近开关,接线楼网友所说的。如果使用NPN型,是不能工作的!

  2)再看三菱公司的FX1N PLC,输入电路的结构是典型的日本式,接线图如下所示:

  从图中可以看出,外部开关量输入触点的公共端接到了电源的0V端,这种情况应使用NPN型接近开关,接线楼网友所说的(只不过PLC的“M”,相当于三菱系列中的“COM”)。同理,三菱PLC如果使用PNP型接近开关,也是不能工作的!

  3)本帖中两个插图是在厂商提供的产品样本的基础上补充绘制而成的,供参考。

  Pepperl+Fuchs公司研发成功的新一代传感器将创新性、可靠性以及无压释放功能结合于一体,在零故障工作方面又向前迈进了一步。老款传感器无需性能匹配,在简便地安装调试后即可被新型传感器所替代。

  VariKont传感器是感应式接近开关至今最典型的结构形式。由Pepperl+Fuchs公司研发的传感器外壳形状在整个传感器市场中得到认可,并已成为了国际标准。如今,在世界各地的不同应用领域中,都可以看到VariKont传感器;在机床及设备制造领域中,其为使用者提供重要信息,保障各个生产过程及流程的顺利进行。

  尽管在这种背景下,Mannheim的专家们最终仍然获得了成功:他们在市场上为其他传感器研发者树立了新标杆。例如,除了电气性能得到提高外,其坚固耐用的性能与在严酷环境下的工作可靠性等皆有提高。专家们期望,能为用户提供在机床及设备在压力释放条件下都可以使用的新型传感器。

  新型传感器在产品角与边的设计上更加完美,总共8个角中的4个角上安装了LED发光二极管,其中各有两个闪烁发光的绿色与黄色LED二极管用于表示不同的工作状态和开关状态。

  因此,操作者可以从不同观察角度清楚地掌握当前工作状况,从而大大减轻了设备调试、维修以及故障查询时的工作量。LED发光二极管这种新颖独特的设计,使得市场上假冒伪劣产品不会具有相同的功能。这种角部二极管的安装形式早在2003年时便已成功投放市场,当时的产品型号为VariKont L,是一种适用于内腔、没有单独锁紧槽的小型传感器。

  VariKont L外壳尺寸仅有118mm×40mm×40mm,此种变型传感器的外壳设计了锁紧槽。传感器顶部带有传感及电子数据处理技术所必需的所有元器件,其主体上带有机械固定装置及电气安装使用的锁紧槽。仅用三个螺钉即可将预装的固定板和电气连接件都连接在一起。新型VariKont传感器采用了新技术——360 显示当前电气功能状态,使传感器的安装更加简便,有利于设备在调试和维修时的更换,无需重复电气接线。

  新型传感器坚固耐用,可在室内及户外各种工作条件下使用,且性能稳定。现在,这些重要的技术特性有了进一步扩展:具有良好的耐UV紫外线照射性能,采用新型密封方案使传感器在野外工作时可更好地抵抗潮气侵蚀。另外,外壳的密封性与坚固耐用性可满足安全防护等级IP 67和IP 69k的要求。因此,新一代传感器具有更好的耐气候、防水、耐热和耐冲击性能。

  在标准外形的情况下,新一代传感器可在20~40mm内有效完成开关控制任务,尤其是控制距离为40mm这一类型。原先若要完成如此大间距的控制,必须采用规格更大的传感器,型号尺寸至少要大一号。新型VariKont传感器的另一大特点是衰减系数为1。在检测金属材料经常变化的生产过程中,具有这一衰减系数的传感器提供了理想的解决方案;例如汽车工业企业中经常加工的铁炭合金、铝合金或其他轻合金材料。当机床设备的多种电气件都被安装在较为狭小的空间中时,此种传感器的电磁性能便可很好地抵抗周围环境干扰电流的影响。传感器可按npn型或pnp型开关,作为常闭或常开开关使用,可按照市场中常见的双线、三线及四线技术提供给用户。

  新型传感器采用现代化设计,在电气与机械性能方面进行了大量技术改进,采用了压力状况闪烁显示技术,能够实现可靠且无压力的工作,这使 VariKont传感器又向着零缺陷原则迈进了一步。由于传感器上下部分间采用了性能可靠的连接技术,使用户掌握了可方便更换传感器的可能性,用户能够在没有新投资的情况下使自己的设备达到新技术水平;同时,机床设备现有的电缆连接和接口技术皆无需改动。

  摘要:本文主要分析了数字量输入时PLC内部电路常见的几种形式,SINK- 拉电流输入 ,SOURCE- 灌电流输入,并结合传感器常见几种输出形式和经常遇到的NPN和PNP输出,以及单端与双端接口,给出了和不同的PLC电路形式连接时的接线方法。

  目 前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以 接负极也可以接正极。

  PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。

  SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。

  SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。

  2)、由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。

  3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。

  4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。

  5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。

  接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。

  对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。

  以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。

  另 一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是 传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大 关系。并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。

  如 图1,直流输入电路要求外部输入信号的元件为无源的干接点或直流有源的无触点开关接点,当外部输入元件与电源正极导通,电流通过R1,光电耦合器内部 LED,VD1(接口指示)到COM端形成回路,光电耦合器内部接收管接受外部元件导通的信号,传输到内部处理;这种由直流电提供电源的接口方式,叫直流 输入电路;直流电可以由PLC内部提供也可以外接直流电源提供给外部输入信号的元件。R2在电路中的作用是旁路光电耦合器内部LED的电流,保证光电耦合 器LED不被两线制接近开关的静态泄漏电流导通。

  如图2,交流输入电路要求外部输入信 号的元件为无源的干接点或交流有源的无触点开关接点,它与直流接口的区分在光电耦合器前加一级降压电路与桥整流电路。外部元件与交流电接通后,电流通过 R1,C2经过桥整流,变成降压后的直流电,后续电路的原理与直流的一致。交流PLC主要适用相对环境恶劣,,布线技改变动不大等场合;如接近开关就用交 流两线直接替代原来行程开关。

  为 了节省输入端子,单端共点输入的结构是在PLC内部将所有输入电路(光电耦合器)的一端连接在一起接到标示为COM的内部公共端子(internal comcon terminal),各输入电路的另一端才接到其对应的输入端子X0、X1、X2、....,com共点与N个单端输入就可以做N个数字量的输入(N+1 个端子),因此我们称此结构为单端共点输入。

  用户在做外部数字量输入组件的接线时也需要同样的作法,需要将所有输入组件的一端连接在一起,叫输入组件的的外部共线(external comcon wire);输入组件的另一端才接到PLC的输入端子X0、X1、X2、....。

  如果COM为电源24V+(正极),外部共线V-(负极),此接法称SINK(sink Current 拉电流)输入方式;也称之PLC接口共电源正极。

  SINK(sink Current 拉电流)输入方式,可接NPN型传感器,即X端口与负极相连。

  SRCE(source Current 灌电流)输入方式,可接PNP型传感器。即X端口与整机极相连。

  为 了适应各地区的使用习惯,内部公共端子有的厂家的PLC是采用S/S端子,此端子可以与电源的24V+(正极)或24V-(负极)相连,结合外部共线接线 变化使PLC可以 SINK(sink Current 拉电流)输入方式,可接NPN型传感器和SRCE(source Current 灌电流)输入方式,可接PNP型传感器。较采用COM端的PLC更灵活。S/S端子的发展是为了适用日系与欧系PLC混合使用工控场合,起到通用的作 用,S/S端子也称之 SINK/SRCE可切换型。

  (外部输入组件可以为按钮开关、行程开关、舌簧开关、霍尔开关、接近开关、光电开关、光幕传感器、继电器触点、接触器触电等开关量的元件。)

  ● 单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线 SINK/SRCE可切换输入方式

  S/S端子与COM端不同的是,COM是与内部电源正极或负极固定相连,S/S端子是非固定相连的,根据需要才与内部电源或外部电源的正极或者负极相连。

  ● 单端共点SINK输入接线(内部共点端子S/S→24V+,外部共线V-)。

  ● 单端共点SRCE输入接线(内部共点端子S/S→24V-,外部共线: 当有源输入元件(霍尔开关、接近开关、光电开关、光幕传感器等)数量比较多,消耗功率比较大,PLC内置电源不能满足时,需要配置外置电源。根据需求可以配24VDC,一定功率的开关电源。外置电源原则上不能与内置电源并联,根据COM与外部共线的特点, SINK(sink Current 拉电流)输入方式时,外置电源与内置电源正极相连接; srcE(source Current 灌电流)输入方式时,外置电源与内置电源负极相连接。

  4.2.5: 简单判断SINK(sink Current 拉电流)输入方式,只需要Xn端与负极短路,如果接口指示灯亮就说明是SINK输入方式。共正极的光藕合器,可接NPN型的传感器。 srcE(source Current 灌电流)输入方式,将Xn端与正极短路,如果接口指示灯亮就说明是SRCE输入方式。共负极的光藕合器,可接PNP型的传感器。

  4.2.4:对于2线式的开关量输入,如果是无源触点,SINK与SRCE按上图的输入元件接法,对于2线式的接近开关,需要判断接近开关的极性,正确接入。我公司部分2线式的LJK系列接近开关也有不分极性即可接入接口的,具体参考附带产品说明书。

  主 要用于硬件高速计数器(HHSC)的输入使用,接口电压为5VDC,在应用上为确保高速及高噪音抗性通常采用双线驱动方式(Line-Drive)。如果 工作频率不高与噪音低也可以采用5VDC的单端SINK或者SRCE接法,串联一个限流电阻转换成24VDC的单端SINK或者SRCE接法。

  注:24VDC供电的传感器,在输入回路上需要串联限流电阻,R1为10Ω,R2为2KΩ,不串联限流电阻,将烧毁接口回路,限流电阻取值2.7KΩ。

  无源干接点比较简单,接线容易。不存在电源的极性,压降等因素,上图3-6中的输入元件这是此类型。这里不重复介绍。

  有 源两线接近开关分直流与交流,此传感器的特点就是两根线,传器输出端导通后,为了保证电路正常工作需要一个保持电压来维持电路工作,通常在3.5-5V的 压降,静态泄露电流要小于1mA,这个指标很重要;如果过大,在接近开关没检测信号时,就使PLC的输入端的光电耦合器导通。我公司的LJK系列两线制接 近开关静态泄露电流控制在0.35-0.5mA之间适应各类型PLC。

  直流两线制接近开关分二极管极性保护与桥整流极性保护,前者在接PLC时需要注意极性,后者就不需要注意极性。有源舌簧磁性开关主要用在汽缸上做位置检测,由于需要信号指示,内部有双向二极管回路,因此也不需要注意极*流两线制接近开关就不需要注意极性。如图10:

  2.1、单端共点SINK输入接线(内部共点端子COM→24V+,外部共线、单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线、S/S端子接法参考图5-图6以及图11-图12。

  3:有源三线传感器(电感接近开关、电容接近开关、霍尔接近开关、光电开关等)

  直流有源三制线接近开关与光电开关输出管使用三极管输出,因此传感器分NPN和PNP输出,有的产品是四线制,有双NPN或双PNP,只是状态刚好相反,也有NPN和PNP结合的四线输出。

  NPN型当传感器有检测信号VT导通,输出端OUT的电流流向负极,输出端OUT电位接近负极,通常说的高电平翻转成低电平。

  PNP型当传感器有检测信号VT导通,正极的电流流向输出端OUT,输出端OUT电位接近正极,通常说的低电平翻转成高电平。

  电 路中三极管的发射极上的电阻为短路保护采样电阻2-3Ω不影响输出电流。三极管的集电极的电阻为上拉与下拉电阻,提供输出电位,方便电平接口的电路,另一种输出的三极管集电极开路输出不接上拉与下拉电阻,更多问题可以参考《接近开关、光电开关的输出与负载接口问题》的文章。

  3.1单端共点SINK输入接线(内部共点端子COM→24V+,外部共线、单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线、S/S端子接法参考图5-图6、图11-图12以及图14-图15。

  PLC输入接口电路形式和外接元件(传感器)输出信号形式的多样性,因此在PLC输入模块接线前必要了解PLC输入电路形式和传感器输出信号的形式,才能确保PLC输入模块接线正确无误,在实际应用中才能游刃有余,后期的编程工作和系统稳定奠定基础。

  一。 PNP与NPN型传感器一般有三条引出线,即电源线VCC、GND,OUT信号输出线、NPN类

  NPN是指当有信号触发时,信号输出线OUT和GND连接,相当于OUT输出低电平。

  PNP是指当有信号触发时,信号输出线OUT和VCC连接,相当于OUT输出高电平的电源线。

  PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种不同的状态,属于开关型传感器。但二者输出信号是截然相反的,即高电平和低电平。

  先要搞清楚PNP、NPN 表示的意思是什么。P表示正、N表示负。PNP表示平时为高电位,信号到来时信号为负。NPN表示平时为低电位,信号到来时信号为高电位输出.接近开关和 光电开关只是检测电路不同输出相同。至于PLC接线,一般用NPN的较多。进入中国的多数为世界型和通用型。可直接用NPN型。接近开关和光电开关的电源 正端接电源正、负接公共端、输出接PLC的输入端。

  四线的接近开关我用过的是台湾瑞科的,其中一条白线接法不同好象可以选择是常开还是常闭。

  四线的光电开关一般也是有一条白线可以选择工作模式:LINGHTON/DARKON.

  五线的大家可能没注意,我用的也是光电的,其实两条是电源,另三条是一组继电器的输出触点。

  当串联时,在传感器上的电压降相加,它减低了负载上可利用的电压,因此要注意:不能低于负载上的最小工作电压(注意到电网电压的波动)。

  断开的触点中断了传感器的电源电压,若在传感器被衰减期间内机械触点闭和的话,则会产生一个短时间的功能故障,传感器的准备延迟时间(t≤80ms)避免了立即的通断动作。

  补偿方法:将一电阻并联在机械触点上(当触点断开时也是一样),此电阻使传感器的准备时间不再起作用,对于200V交流,此电阻大约为82KΩ/1w。

  闭和触点使传感器的工作电压短路,当触点短开以后只有在准备延迟时间(t≤80ms)之后传感器才处于功能准备状态。

  补偿办法:触点上串联一个电阻可以可靠地保证了传感器的最小工作电压,因此避免了在机械触点断开之后的准备延迟。

热销产品
  • KMS-233 KMS-243 3极连接器

    MORE >
  • KMS-034 KMS-044 四极工业插头

    MORE >
  • KMS-234 KMS-244 4极连接器

    MORE >